Secondary Education Examination Model Question - 2078

Grade: 12

Subject: Business Mathematics (Bmt. 406) Full Marks: 75

Time: 3 hrs.

Candidates are required to give their answer in their own words as far as practicable. The figures in the margin indicate full marks.

Attempt all questions.

Group A $(1 \times 11 = 11)$

Write the correct option in your answer sheet.

- 1. Two matrices A and B can be multiplied if
 - (a) No. of columns of A = No. of columns of B
 - (b) No. of rows of A = No. of rows of B
 - (c) No. of columns of A = No. of rows of B
 - (d) No. of rows of A = No. of columns of B.

2. If the
$$\begin{vmatrix} x & 0 & 0 \\ 2 & 1 & 3 \\ 0 & 1 & 4 \end{vmatrix} = 3$$
, then the value of x is

- (c) 0
- (d) 2

3. Let
$$A = \begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix}$$
, then Adj.(A) is

(a) $\begin{bmatrix} 5 & -3 \\ -2 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} 5 & -3 \\ 2 & 1 \end{bmatrix}$

(a)
$$\begin{bmatrix} 5 & -3 \\ -2 & 1 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 5 & -3 \\ 2 & 1 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix}$$

$$(d) \begin{bmatrix} 5 & 3 \\ 2 & 1 \end{bmatrix}$$

4. The function $f(x) = 2x^2 - 3x$ is increasing at

(a)
$$\left(-\frac{1}{4},\infty\right)$$

(a)
$$(-\frac{1}{4}, \infty)$$
 (b) $(-\frac{3}{4}, \infty)$

$$(c)(\frac{1}{4},\infty)$$

$$(d) \left(\frac{3}{4}, \infty\right)$$

5. The value of $\int_0^1 xe^x dx$ is

- (d) e

6. If k-1, k+8 and k+26 are in G.P., then the value of k is

- (a) 12
- (b) 9
- (c) 10
- (d) 8

7. A project would normally be undertaken if its net present value is

(a) Negative

- (b) Zero
- (c) Exactly the same as the NPV of existing projects
- (d) Positive

8. A machine whose scrap value after 10 years is Rs. 1500, depreciated at the rate of 12% per annum on the reducing balance, then the original cost is

- (a) Rs. 5386
- (b) Rs. 1500
- (c) Rs. 2500
- (d) Rs. 15009

9. In simplex method, the feasible basic solution must satisfy the

- (a) non negative constraint
- (b) negative constraint
- (c) basic constraint
- (d) common constraint

10.	In a distribution, the difference of the tw median is 36, then the coefficient of skewne	-	m is 70 and the									
	(a) 0.1 (b) -0.1 (c) 25	(d) 45										
11.	Two events are mutually exclusive if											
	(a) the sum of their probabilities must be greater than one											
	(b) if the occurrence of one event excludes	the occurrence of other										
	(c) the sum of their probabilities must be ed											
	(d) the difference of their probabilities mus	st be equal to one										
	Group B	$(5\times8=40)$										
mad mad 0.1	State the Hawkins-Simon conditions for the chinery, electricity and oil of a small country as thinery requires inputs of 0.3 units of electricity units of machinery and 0.2 units of oil. Oil rest of electricity. Determine the machinery, electricity.	re 3000, 5000 and 2000 respectively and 0.3 units of oil. Electricity requires inputs of 0.2 units of m	rely. Each unit of requires inputs of achinery and 0.1									
			[1 + 4]									
13.	Solve the following system by using Gauss											
	x-2y+3z=2, $2x-3y+z=1$, $3x-y+2z=1$		[5]									
14.	Suppose that the demand equation for a certain	in commodity is $Q = 60 - 0.1P$. Is o	demand elastic or									
	inelastic at $P = 200$? Prove that the relation	$\langle O_{\lambda} \rangle$										
	MR = $AR\left(1 - \frac{1}{\eta_d}\right)$, where η_d is the elasticity	of demand, AR and MR are average	age and marginal									
	revenue respectively. Use this relation to find	AR if MR is 25 and η_d is 2.	[1+3+1]									
15.	The demand equation for a certain commod $Q^2 + 8Q + 2$, determine the total profit, reve											
16.	(a) The population growth rate of Nepal is	1.8% in a year. Model the situ	uation using a									
	differential equation. What will be the popul											
	Nepal is 30 million, what will the population	on after 10 years?	[2]									
	(b) A perfectly competitive market has the	demand and supply functions										
	$Q_d = 170 - 8P$ and $Q_s = -10 + 4P$.											
	When the market is out of equilibrium	the rate of adjustment of price	is a function of									
	excess demand such that $\frac{dP}{dt} = 0.5(Q_d - Q_d)$	Q_s)? In the initial time period	d price P_0 is 10,									
	which is not its equilibrium value. Deri	ive a function for P in terms of	t, and comment									
	on the stability of this market.		[3]									

17. Solve the following linear programming problem by simplex method to maximize z = 7x +

[5]

5y subject to $x + 2y \le 6$, $4x + 3y \le 12$, $x, y \ge 0$.

18. (a) Find Karl Pearson's Coefficient of skewness from the following data.[3]

Income	10	12	14	16	20
Frequency	5	8	15	7	5

(b) The mean and variance of binomial distribution are 4 and 4/3 respectively. Find P(1).

[2]

19. State Bayes' theorem. A company has rated 75% of its employees as satisfactory and 25% as un-satisfactory. Personnel records indicate that 80% of the satisfactory workers had previous work experience, while only 40% of the unsatisfactory workers had any previous work experience. If a person with previous work experience is hired, what is the probability that this person will be a satisfactory employee? If a person with no previous work experience is hired, what is the probability that this person will be a satisfactory employee?

[1 + 4]

Group C
$$(8 \times 3 = 24)$$

- 20. (a) Find the area bounded by the x-axis and the curve $f(x) = x^3 x^2 2x$. [2]
 - (b) If the marginal revenue function (MR) = $6x^2 + 4x + 3$, find the total revenue function. Also, deduce the demand function. [2]
 - (c) The demand and supply curves of an item are given by the equations $P_d = 20 3Q Q^2$ and $P_s = Q 1$ respectively. Find the difference between consumer and producer surplus at equilibrium price. [4]
- 21. (a) Divide Rs. 2708 between Ram and Shyam so that Ram's share at the end of 5 years be equal to Shyam's share at the end of 7 years, *C.I.* being calculated at 8% p.a. [4]
 - (b) A man retires at the age of 60 and gets a pension of Rs. 1,200 per year in half-yearly installments for the rest of his life. Taking his expectation of life to be 13 years further, that the interest is at 4% p.a. payable half yearly, what single sum is equivalent to this pension?

 [4]

22. The following table shows the relation between price and demand of certain item:

Price (X)	10	12	20	?	24	26
Demand (Y)	16	15	14	12	11	10

- (a) Calculate the correlation coefficient by Karl Pearson's method if arithmetic mean of X is 19.
 - [4]
- (b) How can you find the correlation coefficient by using regression coefficient?

[1]

(c) Find the equation of the line of regression of X on Y. Estimate the value of X when Y = 30.

[3]

22. Business Mathematics (Bmt. 406)

Test Specification chart, 2078

Grade: 12 Subject: Business Mathematics (Bmt. 406)

SN	1 1								Area-	Number																		
		king Knowledge (16%)									Application (40%)					Higher Ability (20%)					wise Marks	of Questio ns						
				MCQ		SAQ		MCQ		SAQ		LAQ		MCQ		SAQ		LAQ) ³	MCQ		SAQ		LAQ				
			No. of Ouestions	Marks	No. of	Marks	No. of Ouestions	Marks	No. of Ouestions	Marks	No. of	Marks	No. of	Marks	No. of Onestions	Marks	No. of Onestions	Marks	No. of	Marks	No. of	Marks	No. of	Marks				
1	Algebra	21										4)											13	MCQ: 3 SAQ: 2		
2	Calculus	40								4	1														25	MCQ: 2 SAQ: 3 LAQ: 1		
3	Financial Math	17	2	2	2	2	2	10	5	5	1	5)1	8	2	2	4	20	1	8	2	2	1	5	1	8	11	MCQ: 3 LAQ: 1
4	Linear Programming Problem	10)															6	MCQ: 1 SAQ: 1		
5	Statistics	20						1																	12	MCQ: 2		
6	Probability	12				\ ^) >																	8	SAQ: 2 LAQ: 1		
	Total Marks	120		1	2				1	8					3	0					1	.5			75	MCQ: 11 SAQ: 8 LAQ: 3		

	Question format plan												
CN	Turnes of Owestians	Marks per		Number of		Total number	Total						
S.N.	Types of Questions	question	Knowledge	Understanding	Application	Higher Ability	of questions	Marks					
1.	Multiple Choice Question	1	2	5	2	2	11	11					
2.	Short Answer Question	5	2	1	4	1	8	40					
3.	Long Answer Question	8	0	1	(1)	1	3	24					
	Grand Total		4	7	7	4	22	75					

Note:

- Appropriate extra time will be provided for the handicapped students and the alternative questions to the figure based questions should be prepared for blind students.
- Questions should be prepared by giving the context and one question may have more than one sub-questions.
- Application and higher ability questions can be made by relating the other content areas.
- Questions should be made by addressing all the sub-areas of content.
- At least one multiple choice question should be asked from each area (Statistics and Probability).